

IMPLEMENTASI BIM 4D PADA STRUKTUR ATAS DI PROYEK PEMBANGUNAN GEDUNG PERKULIAHAN KAMPUS ULU GADUT UNIVERSITAS NEGERI PADANG

Yufli Maiza Putra¹, Muvi Yandra²

^{1,2} Departemen Teknik Sipil, Fakultas Teknik, Universitas Negeri Padang Email : <u>yuflimaizaputra@gmail.com</u>, <u>muviyandra@ft.unp.ac.id</u>

Abstrak : Tugas akhir ini dilatar belakangi oleh Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Republik Indonesia, Nomor 22/PRT/ M/2018 yang menyatakan bahwa penggunaan BIM wajib diterapkan pada bangunan dengan jumlah lantai lebih dari 2 dan memiliki luas diatas 2000 m2. Hal yang mendasari pembuatan tugas akhir ini adalah Gedung yang dijadikan studi kasus telah memenuhi persyaratan dan belum menerapkaan BIM. Tujuan dari penelitian ini adalah menerapkan konsep Building Information Modelling (BIM) 3D serta 4D. Tugas akhir ini dibantu dengan Software BIM, diantaranya adalah Autodesk Autocad, Autodesk Revit, dan Autodesk Naviswork Manage. Pemodelan yang dilakukan pada Autocad merupakan pemodelan 2D berdasarkan gambar rencana dan dilanjutkan dengan pembuatan model 3D menggunakan software Autodesk Revit. Hasil yang diperoleh dari pemodelan 3D adalah berupa visualisasi 3D dan informasi geometri bangunan berupa volume, luas, panjang, dan lebar. Setelah dilakukan pemodelan 3D, dilanjutkan dengan penerapan BIM 4D dengan software Autodesk Naviswork Manage. Hasil dari penerapan BIM 4D yang dilakukan pada Autodesk Naviswork Manage berupa simulasai penjadwalan dan durasi penjadwalan selama 116 hari kerja.

Kata Kunci : Building Information Modeling; Autodesk Naviswork; Time Schedule

Abstract: This final project is motivated by the Regulation of the Minister of Public Works and Public Housing of the Republic of Indonesia, Number 22 / PRT / M / 2018 which states that the use of BIM must be applied to buildings with more than 2 floors and an area above 2000 m2. The basis for making this final project is that the building that is used as a case study has met the requirements and has not implemented BIM. The purpose of this study is to apply the concept of Building Information Modeling (BIM) 3D and 4D. This final project is assisted by BIM Software, including Autodesk Autocad, Autodesk Revit, and Autodesk Naviswork Manage. Modeling carried out on Autocad is 2D modeling based on plan drawings and continued with making 3D models using Autodesk Revit software. The results obtained from 3D modeling are in the form of 3D visualization and building geometry information in the form of volume, area, length, and width. After 3D modeling, continued with the application of 4D BIM with Autodesk Naviswork Manage software. The result of the implementation of 4D BIM carried out on Autodesk Naviswork Manage is in the form of scheduling simulation and scheduling duration for 116 working days.

Keyword : Building Information Modeling; Autodesk Naviswork; Time Schedule

PENDAHULUAN

Perkembangan teknologi dan informasi dalam bidang arsitektur dan Engineering telah menciptakan suatu sistem yang dikenal dengan Building Information Modelling (BIM). Building Information Modelling (BIM) merupakan teknologi yang berperan untuk memproses data dan memeberikan informasi untuk mengeluarkan kebijakan yang semua prosesnya berjalan secara kolaborasi dan berintegrasi dalam model digital sebagai outputnya (Sartika et al., 2023). Manfaat utama dari penggunaan BIM adalah biaya dan waktu dalam siklus proyek lebih terkontrol dan efisien sehingga dapat meminimalisir risiko keterlambatan pada proses konstruksi.

Implementasi BIM merupakan cara kerja baru dalam hal teknologi yang berupaya mendukung serta memfasilitasi berbagai aspek kerja dalam dunia konstruksi. Penerapan BIM bukan hanya sekedar bentuk 3D, tapi telah mencakup pada bidang 4D, 5D, 6D, 7D, 8D, 9D, dan 10D. Masingmasing dari dimensi BIM memiliki peran serta keguanan dalam bidang konstruksi dan saling berkaitan saru dengan yang lainnya. Penerapan BIM di Indonesia telah diatur dalam Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Republik Indonesia, Nomor 22/PRT/ M/2018 tentang Pembangunan Bangunan Gedung Negara yang menyatakan bahwa penggunaan BIM wajib diterapkan pada bangunan dengan jumlah lantai lebih dari 2 dan memiliki luas diatas 2000 m2. Dalam studi kasus tugas akhir ini, implementasi BIM yang akan dilaksanakan adalah bidang 4D yang berfokus pada penjadwalan konstruksi. Studi yang digunakan merupakan proyek kasus pembangunan Gedung Perkuliahan Kampus Ulu Gadut Universitas Negeri Padang.

Pembangunan gedung ini berlokasi di kampus Universitas Negeri Padang Ulu Gadut, kota Padang. Gedung yang dibangun memiliki jumlah lantai sebanyak 4 lantai dan luas 1.980 m2. Berdasarkan Peraturan Menteri Pekerjaan Umum dan Perumahan Rakyat Republik Indonesia, Nomor 22/PRT/M/2018, pembangunan Gedung Perkuliahan Kampus Ulu Gadut Universitas Negeri Padang telah memenuhi syarat untuk penerapan BIM. Selain telah memenuhi syarat dalam Menteri Pekerjaan Umum peraturan dan Perumahan Rakyat Republik Indonesia terkait BIM, alasasn dari mengambil gedung ini sebagai studi kasus dikarenakan pada gedung ini ini belum adanya penerapan BIM.

Penjadwalan merupakan proses untuk menentukan aktivitas atau pekerjaan yang diperlukan untuk menyelesasikan suatu proyek konstruksi dalam kurun waktu tertentu (Marbun et al., 2023). Penjadwalan yang dilakukan secara optimal dapat membantu penggunaan sumber daya dengan biaya yang minimum sehingga dalam pelaksanaannya dibutuhkan alat yang dapat mengoptimalkan penjadwalan konstruksi (Saputra & Abma, 2023). Tujuan dari penjadwalan konstruksi adalah memperoleh besaran waktu yang optimal dalam menyelesaikan suatu pekerjaan dengan memperhatikan persyaratan kualitas dan kuantitas dalam proyek konstrksi (Dinda Sulistia & Deliyarti Agustina, 2023).

METODE PENELITIAN

Perancangan tugas akhir ini bersifat nyata karena studi kasus yang digunakan merupakan bangunan yang memang dibangun. Tugas akhir ini dibantu dengan software Autodesk Revit 2024 untuk pemodelan 3D dan Autodesk Naviswork Manage untuk penjadwalan dengan menggunakan data-data hasil perancangan berupa time schedule, dan shop drawing.

Teknik pengumpulan data yang digunakan adalah pengumpulan data sekunder. Data sekunder merupakan suatu data yang diperoleh secara tidak lansung di lapangan. Data sekunder yang diperoleh berupa shop drawing/gambar rencana, time schedule, serta data yang relevan.

Penelitian ini dimulai dengan mengumpulkan datadata yang diperlukan kemudian melakukan pemodelan 3D pada software Autodesk Revit 2024. Setelah mendapatkan model 3D dilanjutkan dengan memasukkan model 3D ke software Autodesk Naviswork Manage untuk implementasi BIM 4D yang merupakan penjadwalan.

Gambar 1. Diagram Alir Penelitian

HASIL DAN PEMBAHASAN

Aplikasi Building Information Modeling (BIM)

1. Autodesk Revit

Autodesk Revit merupakan suatu program grafis berbasis BIM yang mengahasilkan gambar kerja tiga dimennsi sebagai output utama dan terdapat berbagai informasi yang dibutuhkan dalam proyek konstruksi (Alimin & Taulani, 2023). Pemodelan dengan Autodesk Revit memiliki kelebihan dan kekurangan (Aditya Suharianto et al., 2023). Kelebihan:

- a. Dapat berintegrasi dengan kapasitas yang lebih besar dengan aplikasi lain yang berkaitan dengan proyek konstruksi
- b. Dapat memeriksa adanya clash/tabrakan dalam melakukan desain
- c. Meningkatkan efisiensi dan meningkatkan waktu perencanaan sehingga dapat mempercepat kinerja Kekurangan:
- a. Memerlukan beberapa software tambahan untuk mempercepat kerja
- b. Harga lisensi yang cukup mahal
- c. Spesifikasi laptop atau komputer yang digunakan tinggi agar dapat mengoptimalkan kinerja aplikasi
- 2. Autodesk Nasviswork Manage

Autodesk Naviswork merupakan salah satu software BIM 4D yang berkaitan dengan penjadwalan proyek konstruksi serta memungkinkan pengguna untuk membuka dan mengkombinasikan berbagai data yang berbeda menjadi satu kesatuan sehingga dapat dianalisis dalam satu lingkungan secara real time (Patel et al., 2022). Adapun kelebihan dan kekurangan dari Autodesk Naviswork sebagai berikut:

Kelebihan:

- a. Mampu mengintegrasikan model 3D dengan berbagai disiplin ilmu
- b. Visualisasi untuk meninjau model 3D yang lebih interaktif
- c. Menghasilkan data laporan dan informasi seperti laporan kemajuan konstruksi

Kekurangan:

- a. Memerlukan keahlian dalam menjalankan aplikasinya
- b. Harga lisensi yang mahal
- c. Memerlukan spesifikasi komputer atau laptop yang tinggi untuk mengoptimalkan kinerja aplikasi

Pemodelan 3D Struktur

Pemodelan 3D struktur dibuat dengan bantuan software Autodesk Revit versi student. Pemodelan 3D struktur digunakan untuk memvisualisasikan struktur bangunan yang memuat informasi dan data geometri bangunan. Tahap dalam pemodelan 3D struktur dimulai dari menggambar sketsa denah 2D bangunan sampai tahap mendiskripsikan element struktur yang digunakan. Terdapat 3 tahapan dalam pemodelan 3D bangunan, yaitu:

1. Sketsa 2D

Sketsa 2D digunakan sebagai grid dalam pembuatan denah pada model 3D. Sketsa 2D dibuat dengan software AutoCad dan gambar

2D yang telah dibuat di export ke dalam Autodesk Revit

- 2. Pendefinisian element struktur
 - Pendefinisian elemen struktur dilakukan pada software Autodesk Revit dengan menggunakan template Metric Multi-Discipline. Elemen struktur vang didefinisikan meliputi kolom, balok, dan pelat Masing-masing element struktur lantai. memiliki dimensi dan jenis tipe yang berbedabeda, untuk kolom terdapat 10 tipe, balok berjumlah 9 tipe, dan untuk pelat lantai hanya terdapat 1 tipe.
- Pemodelan 3D dengan Autodesk revit Pemodelan 3D dilakukan berdasarkan grid yang sebelumnya telah diimport dari AutoCad. Pemodelan dilakukan dengan cara memilih elemen struktur yang telah didefinisikan sebelumnya dan diletakkan

sesuai dengan gambar rencana

Gambar 2. Model 3D Struktur

Rekapitulasi Volume Pekerjaan Struktur

Volume pekerjaan struktur digunakan untuk menentukan penjadwalan yang akan dibuat. Volume ini didapat dari output pemodelan 3D di Revit dengan cara mengambil menu schedule pada tab view dan memilih elemen yang akan dikeluarkan volumenya. Berdasarkan output yang diperoleh, dilakukan rekapitulasi berdasarkan nama dari masing-masing elemen struktur.

Nama	Dimensi	Volume	Luas Bekisting	Volume Tulangan
Kolom Beton K1	40 x 60	0.95 m ³	8 m²	0.032 m ³
Kolom Beton K2	40 x 60	0.95 m ³	8 m²	0.028 m ³
Kolom Beton K3	40 x 60	0.95 m ³	8 m²	0.024 m ³
Kolom Beton K4	30 x 30	0.35 m ³	5 m²	0.020 m ³
Kolom Beton K5	30 x 30	0.36 m ³	5 m²	0.020 m ³
Kolom Beton K6	40 x 40	0.64 m ³	6 m²	0.021 m ³
Kolom Beton K7	40 x 40	0.63 m ³	6 m ²	0.015 m ³
Kolom Beton K8	30 x 30	0.36 m ³	5 m²	0.014 m ³
Kolom Beton K9	40 x 40	0.30 m ³	3 m ²	0.004 m ³
Kolom Beton K11	20 x 20	0.08 m ³	2 m ²	0.002 m ³
Balok Beton B1	30 x 45	0.30 m ³	5 m²	0.013 m ³
Balok Beton B2	30 x 45	0.43 m ³	5 m²	0.012 m ³
Balok Beton B3	30 x 60	0.55 m ³	6 m²	0.015 m ³
Balok Beton B4	25 x 40	0.31 m ³	3 m²	0.008 m ³
Balok Beton B5	25 x 40	0.19 m ³	3 m²	0.006 m ³
Balok Beton B6	30 x 60	0.55 m ³	6 m²	0.014 m ³
Balok Beton B7	30 x 45	0.30 m ³	4 m²	0.010 m ³
Balok Beton B8	25 x 40	0.23 m ³	3 m²	0.008 m ³
Balok Beton B9	25 x 40	0.14 m ³	3 m ²	0.008 m ³
Pelat Lantai 2				
- Pelat Gedung A		23.64 m ³	197 m²	0.376 m ³
- Pelat Gedung B		30.86 m ³	254 m²	0.492 m ³
Pelat Lantai 3				
- Pelat Gedung A		23.64 m ³	197 m²	0.375 m ³
- Pelat Gedung B		30.86 m ³	257 m²	0.492 m ³
Pelat Lantai 4				
- Pelat Gedung A		13.58 m ³	113 m²	0.212 m ³
- Pelat Gedung B		15.71 m ³	131 m²	0.246 m ³

Tabel 1. Rekapitulasi Volume Pekerjaan Struktur

Pengelompokan Elemen Struktur

Pengelompokan volume pekerjaan struktur dibagi menjadi 2 begian, yaitu volume pekerjaan gedung A dan volume pekerjan gedung B.

Tabel 2. RAB Volume Proyek Gedung A:

lanta	Element Struktur) (aluma				
i		Mark	Volume	Luas	lulangan	Berat Tulangan	
		K1	13,19 m ³	112 m ²	0,448 m ³		
	Kalawa	K4	2,45 m ³	35 m ²	0,14 m ³	4045 5 km	
	KOIOM	K5	1.26 m ³	12 m ²	0,042 m ³	4945,5 Kg	
		Total	16,9 m ³	159 m ²	0,63 m ³		
		B1	7,1 m ³	124 m ²	0.255 m ³		
1		B2	0,15 m ³	2 m ²	0.005 m ³		
	Balak	B3	4,24 m ³	56 m ²	0.12 m ³	2571 75 kg	
	DdIUK	B4	0,67 m ³	12 m ²	0.018 m ³	55/1,/5 Kg	
		B5	1,82 m ³	38 m ²	0.057 m ³		
		Total	13,98 m ³	232 m ²	0.455 m ³		
	Pelat	Pelat L2 A	23,64 m ³	197 m ²	0,376 m ³	2951,6 kg	
	Kolom	К2	13,19 m ³	112 m ²	0.392 m ³		
		K4	2,45 m ³	35 m ²	0.133 m ³	4356 75 kg	
		K7	1.26 m ³	12 m ²	0.03 m ³	4550,75 Kg	
		Total	16,9 m ³	159 m ²	0.555 m ³		
2 Balok	B1	5,6 m ³	124 m ²	0.204 m ³			
	B2	0,15 m ³	2 m ²	0.005 m ³			
		B5	1,82 m ³	56 m ²	0.102 m ³		
	Balok	B6	4,24 m ³	12 m ²	0.112 m ³	3854,35 kg	
		B7	1,55 m ³	38 m²	0.05 m ³		
		B8	0,67 m ³	12 m ²	0.018 m ³		
		Total	13,98 m ³	232 m ²	0.491 m ³		
	Pelat	Pelat L3 A	23,64 m ³	197 m ²	0,375 m ³	2943,75 kg	
3	Kolom	К3	13,26 m ³	112 m ²	0.36 m ³	3877,9 kg	

		K4	1, 05 m ³	15 m ²	0.054 m ³	
		К7	1.26 m ³	12 m ²	0.03 m ³	
		К8	1,41 m ³	20 m ²	0.05 m ³	
		Total	16,98 m ³	159 m ²	0.494 m ³	
		B4	2,42 m ³	41 m ²	0.063 m ³	
Palak	B5	8.84 m ³	158 m ²	0.243 m ³	DEAE AE ka	
Daluk		B9	0,58 m ³	12 m ²	0.031 m ³	2045,45 Kg
		Total	11,84 m ³	211 m ²	0.337 m ³	
	Pelat	Pelat L4 A	13,58 m ³	113 m ²	0,212 m ³	1664,2 kg
4	Kolom	К9	5,1 m ³	51 m ²	0,068 m ³	533,8 kg

Occurring D.

Flemer		at Struktur	tur					
lantai	Eleffiel	Mark	Volume	Luas	Tulangan	Berat Tulangan		
		K1	18,83 m ³	160 m ²	0.64 m ³			
		K4	4,2 m ³	60 m ²	0.24 m ³			
	Kolom	K5	0,36 m ³	5 m ²	0.02 m ³	7394,7 kg		
		K6	1,27 m ³	12 m ²	0.042 m ³			
		Total	24,66 m ³	237 m ²	0.942 m ³			
		B1	11,56 m ³	194 m ²	0.402 m ³			
1		B2	1,04 m ³	14 m ²	0.029 m ³			
	Deleli	B3	5,3 m ³	70 m ²	0.15 m ³	5200 A li-		
	Balok	B4	2,23 m ³	38 m ²	0.058 m ³	5369,4 кg		
		B5	1,47 m ³	30 m ²	0.045 m ³			
		Total	21,6 m ³	346 m ²	0.684 m ³			
	Pelat	Pelat L2 B	30,86 m ³	254 m ²	0,492 m ³	3862,2 kg		
		К2	18,82 m ³	160 m ²	0.56 m ³			
	Kalam	К4	4,55 m ³	65 m ²	0.247 m ³	CE70 45 h-		
	KOIOM	K7	K7 1.27 m ³ 12 m ²	12 m ²	0.03 m ³	6570,45 Kg		
		Total	24,64 m ³	237 m ²	0.837 m ³			
	Balok	B1	11,52 m ³	194 m ²	0.401 m ³			
2		B2	1,16 m ³	16 m ²	0.029 m ³			
		B5	1,44 m ³	30 m ²	0.045 m ³	5282 05 kg		
		B6	5,3 m ³	70 m ²	0.14 m ³	5265,95 Kg		
		B8	2,23 m ³	38 m ²	0.058 m ³			
		Total	21,65 m ³	348 m ²	0.673 m ³			
	Pelat	Pelat L3 B	30,86 m ³	254 m ²	0,492 m3	3862,2 kg		
Kolom 3 Balok	К3	18.96 m ³	160 m ²	0.48 m ³				
	Kolom	K7	1,26 m ³	12 m ²	0.03 m ³	5275.2 ka		
	KOIOIII	K8	4,58 m ³	65 m ²	0.162 m ³	5275,2 Kg		
		Total	24,8 m ³	237 m ²	0.672 m ³			
		B2	0,51 m ³	6 m ²	0.011 m ³			
		B4	3 m ³	50 m ²	0.077 m ³			
	Balok	B5	8,97 m ³	156 m ²	0.489 m ³	5761.0 kg		
		B6	4,1 m ³	49 m ²	0.107 m ³	5701,9 Kg		
		B8	1,92 m ³	33 m ²	0.05 m ³			
		Total	18,5 m ³	294 m ²	0.734 m ³			
	Pelat	Pelat L4 A	15,71 m ³	131 m ²	0,246 m ³	1931,1 kg		
		К9	7,5 m ³	75 m ²	0.1 m ³			
4	Kolom	K11	0,32 m ³	8 m ²	0.008 m ³	847,8 kg		
		Total	7,82 m ³	83 m ²	0.108 m ³			

Penjadwalan Pekerjaan Struktur

Pada penjadwalan pekerjaan struktur dilakukan perhitungan untuk mendapatkan durasi dari satu pekerjaan. Hal ini dilakukan karena data yang didapat adalah gambar rencana, time schedule, dan jumlah pekerja yang ada. Jumlah total pekerja yang diketahui adalah 50 orang. Berdasarkan jumlah pekerja tersebut dilakukan perhitungan untuk menentukan durasi dari suatu pekerjaan. Dalam perencanaan penjadwalan proyek konstruksi, jumlah tenaga kerja yang diperlukan dalam suatu pekerjaan juga harus diperhitungkan agar proses pelaksanaan pekerjaan dapat berjalan tepat waktu (Saputra & Abma, 2023). Hal ini dapat ditentukan dengan rumusan:

$$N = \frac{k x V}{T}$$

Dimana:

N = jumlah tenaga kerja

V = volume pekerjaan

k = koefisien tenaga kerj

T = waktu/durasi pekerjaan

Tabel 3. Rel	kapitulasi	Durasi	Pekeriaar	Struktur
--------------	------------	--------	-----------	----------

	Volume	Jumlah Tenaga Kerja	Koefisien Tenaga Kerja	Durasi
PEKERJAAN STRUKTUR LANTAI 1				k.v/T
GEDUNG A				
a. Pemasangan tulangan kolom	4945.5	20	0.0016	1
b. Pemasangan bekisting kolom	159	20	0.66	6
c. Pengecoran kolom	16.9	2	0.4	4
2. Pekerjaan balok lantai 1 Gedung A	0574 75			
a. Pemasangan tulangan balok	35/1./5	20	0.0016	1 7
D. Pemasangan bekisting balok	107	20	0.00	/
a. Pemasangan tulangan pelat lantai	2951.6	20	0.007	2
b. Pemasangan bekisting pelat lantai	197	20	0.66	7
4. Pekerjaan pengecoran balok dan pelat lantai	37.62	2	0.4	8
GEDUNG B				
1. Pekerjaan kolom lantai 1 Gedung B	70047			
a. Pemasangan tulangan kolom	/394./	20	0.0016	1
b. Pemasangan bekisting kolom	237	20	0.66	5
2. Pekeriaan balok lantai 1 Gedung B	24.00	2	0.4	5
a. Pemasangan tulangan balok	5369.4	20	0.0016	1
b. Pemasangan bekisting balok	280	20	0.66	10
3. Pekerjaan pelat lantai 2 Gedung B				
a. Pemasangan tulangan pelat lantai	3862.2	20	0.007	2
b. Pemasangan bekisting pelat lantai	254	20	0.66	9
4. Pekerjaan pengecoran balok dan pelat lantai	52.36	2	0.4	11
PEKERJAAN STRUKTUR LANTAI 2				
GEDUNG A				
a. Pemasangan tulangan kolom	4356 75	20	0.0016	1
h Pemasangan bekisting kolom	159	20	0.66	6
c. Pengecoran kolom	16.9	2	0.4	4
2. Pekerjaan balok lantai 2 Gedung A				
a. Pemasangan tulangan balok	3854.35	20	0.0016	1
b. Pemasangan bekisting balok	187	20	0.66	7
3. Pekerjaan pelat lantai 3 Gedung A				
a. Pemasangan tulangan pelat lantai	2943.75	20	0.007	2
b. Pemasangan bekisting pelat lantai	197	20	0.66	7
4. Pekerjaan pengecoran balok dan pelat lantai	37.62	2	0.4	8
1 Pekeriaan kolom lantai 2 Gedung B				
a. Remasangan tulangan kolom	6570.45	20	0.0016	1
b. Pemasangan bekisting kolom	237	20	0.66	8
c. Pengecoran kolom	24.64	2	0.4	5
2. Pekerjaan balok lantai 2 Gedung B				
a. Pemasangan tulangan balok	5283.05	20	0.0016	1
b. Pemasangan bekisting balok	282	20	0.66	10
PEKERJAAN STRUKTUR LANTAI 3				
GEDUNG A				
1. Pekerjaan kolom lantai 3 Gedung A				
a. Pemasangan tulangan kolom	3877.9	20	0.0016	1
b. Pemasangan bekisting kolom	159	20	0.66	6
c. Pengecoran kolom	16.98	2	0.4	4
2. Pekerjaan balok lantai 3 Gedung A	2645.45	20	0.0016	1
a. Pernasangan tulangan balok	2043.43	20	0.0010	6
3 Pekeriaan nelat lantai 4 Gedung A	1//	20	0.00	0
a Pemasangan tulangan pelat lantai	1664.2	20	0.007	1
b. Pemasangan bekisting pelat lantai	113	20	0.66	4
4. Pekerjaan pengecoran balok dan pelat lantai	25.42	2	0.4	6
GEDUNG B				
1. Pekerjaan kolom lantai 3 Gedung B				
a. Pemasangan tulangan kolom	5275.2	20	0.0016	1
b. Pemasangan bekisting kolom	237	20	0.66	8
c. Pengecoran kolom	24.8	2	0.4	5
2. Pekerjaan balok lantai 3 Gedung B	5764.0	20	0.004.0	4
a. Pemasangan tulangan balok	5/01.9	20	0.0016	1
D. Pemasangan bekisting balok	252	20	0.66	9
 D. Pekerjaan pelat lantal 4 Gedung B Demasangan tulangan pelat lantai 	1021 1	20	0.007	1
b. Pemasangan bekisting pelat lantai	131	20	0,66	5
4. Pekerjaan pengecoran balok dan pelat lantai	34.21	2	0.4	7

PEKERJAAN STRUKTUR LANTAI 4				
GEDUNG A				
1. Pekerjaan kolom lantai 4 Gedung A				
a. Pemasangan tulangan kolom	533.8	20	0.0016	1
b. Pemasangan bekisting kolom	51	20	0.66	2
c. Pengecoran kolom	5.1	2	0.4	2
GEDUNG B				
1. Pekerjaan kolom lantai 4 Gedung B				
a. Pemasangan tulangan kolom	847.8	20	0.0016	1
b. Pemasangan bekisting kolom	83	20	0.66	3
c. Pengecoran kolom	7.82	2	0.4	2

Penjadwalan yang dilakukan pada penelitian ini chart. Bar chart berupa bar merupakan penjadwalan yang digunakan untuk menentukan awal dan akhir dari proyek konstuksi yang ditampilkan dalam bentuk grafik batang. Penggunaan bar chart ini sederhana dan mudah untuk dipahami namun terdapat kekurangan didalamnya, yaitu hubungan antara kegiatan pekerjaan tidak dapat ditunjukkan (Khatimi & Pardosi, 2022).

Gambar 4. Bar Chart Penjadwalaan Pada Naviswork

KESIMPULAN

Hasil dari pengerjaan tugas akhir ini adalah berupa penjadwalan proyek konstruksi pada pekerjaan struktur atas dengan menerapkan BIM 4D. Hasil yang didapatkan berupa bar chart dari setiap pekerjaan struktur dan simulasi dari penjadwalan dengan bantuan BIM 4D. Berdasarkan perhitungan dan simulasi yang dilakukan dengan bantuan BIM 4D dapat diketahui bahwa durasi pekerjaan struktur atas yang diperoleh adalah 116 hari.

DAFTAR PUSTAKA

- Aditya Suharianto, D., Novi Prasetyono, P., & Kunci, K. (2023). Perhitungan Volume Pekerjaan Struktur Proyek Rumah Cluster Bukit Golf Menggunakan Autodesk Revit (Vol. 1, Issue 2).
- Alimin, M., & Taulani, M. (2023). Penerapan Bulding Information Modelling (BIM) Autodesk Revit dalam Pembuatan Bar Bending Schedule (BBS) Pondasi Pile Cap Proyek Apartemen Jkt Living Star-Jakarta Timur. Jurnal Riset Rumpun Ilmu Teknik (JURRITEK), 2(2). https://doi.org/10.55606/jurritek.v2i2.1599

- Dinda Sulistia, & Deliyarti Agustina, I. (2023). Penjadwalan Proyek Dengan Kurva-S Pada Pembangunan Perumahan Di Kota Bekasi. Jurnal Al Ulum LPPM Universitas Al Washliyah Medan, 11(2).
- Khatimi, H., & Pardosi, K. F. (2022). Implementasi
 Building Information Modeling 4D (Studi
 Kasus: Proyek Lanjutan Pembangunan
 Gedung Kantor Sekretariat Daerah
 Kabupaten Tapin). In *Maret* (Vol. 4, Issue 1).
- Marbun, V. V., Gawei, A. B. P., & Happy Puspasari, V. (2023). Penjadwalan Proyek Pada Pembangunan Puskesmas Kota Besi *Vieneser Victory Marbun* (Vol. 6, Issue 2).
- Patel, B., Patel, N., Patel, A., & Patel, S. (2022).
 4D Schedule Optimization for Project Monitoring of Existing Educational Building. *ASPS Conference Proceedings*, 1(1), 1671– 1679. https://doi.org/10.38208/acp.v1.704
- Saputra, G. S., & Abma, V. (2023). Penerapan BIM 4D dalam perencanaan penjadwalan pada pekerjaan struktur jembatan. 3(1).
- Sartika, I., Rachmat, A., & Sugiri, T. (2023). Implementasi Bim Qs Pada Perencanaan Struktur Atas Proyek Pembangunan Gedung Pusat Pelayanan Ibu Dan Anak Rsup Hasan Sadikin Bandung (Vol. 3, Issue SIMTEKS). Bulan Maret Tahun.