REVIEW PENGOLAHAN AIR TINGKAT LANJUT UNTUK PENYISIHAN PENCEMARAN NANOPLASTIK

##plugins.themes.academic_pro.article.main##

Widia Putri
Puti Sri Kumala

Abstract

Air minum merupakan kebutuhan mendasar yang sangat penting bagi manusia. Salah satu pencemaran air minum yang terdeteksi sangat mempengaruhi kualitas adalah kandungan nanoplastik.  Pada ekosistem perairan, nanoplastik merupakan bahan yang tidak dapat terurai. Melalui review singkat ini akan ditinjau efisiensi penyisihan nanoplastik dengan menggunakan berbagai metode pengolahan air. Beberapa metode pengolahan yang ditinjau adalah penyisihan nanoplastik menggunakan pengolahan filtrasi, adsorpsi, pembubuhan koagulan dan flokulan, dan CFS (Koagulasi/Flokulasi Sedimentasi). Metode penelitian yang digunakan adalah tinjauan literatur terkait pengolahan air minum untuk penyisihan pencemaran oleh nanoplastik. Kesimpulan dari tinjauan literatur yaitu proses pengolahan air minum dengan filtrasi dengan pembubuhan koagulan merupakan pengolahan yang paling efisien untuk menyisihkan pencemaran oleh nanoplastik yaitu mencapai 99,9 %.

##plugins.themes.academic_pro.article.details##

How to Cite
Putri, W., & Kumala, P. (2024). REVIEW PENGOLAHAN AIR TINGKAT LANJUT UNTUK PENYISIHAN PENCEMARAN NANOPLASTIK. Jurnal Applied Science in Civil Engineering, 5(1), 140-145. https://doi.org/10.24036/asce.v5i1.104483

References

Bhattacharyya, K. G., & Gupta, S. Sen. (2008). Kaolinite and montmorillonite as adsorbents for Fe (III), Co (II) and Ni (II) in aqueous medium. Applied Clay Science, 41(1–2). https://doi.org/10.1016/j.clay.2007.09.005

Cao, Y., Zhao, M., Ma, X., Song, Y., Zuo, S., Li, H., & Deng, W. (2021). A critical review on the interactions of microplastics with heavy metals: Mechanism and their combined effect on organisms and humans. In Science of the Total Environment (Vol. 788). https://doi.org/10.1016/j.scitotenv.2021.147620
Catarino, A. I., Frutos, A., & Henry, T. B. (2019). Use of fluo
rescent-labelled nanoplastics (NPs) to demonstrate NP absorption is inconclusive without adequate controls. Science of the Total Environment, 670. https://doi.org/10.1016/j.scitotenv.2019.03.194
Chen, Z., Liu, J., Chen, C., & Huang, Z. (2020). Sedimentation of nanoplastics from water with Ca/Al dual flocculants: Characterization, interface reaction, effects of pH and ion ratios. Chemosphere, 252. https://doi.org/10.1016/j.chemosphere.2020.126450

Ganie, Z. A., Khandelwal, N., Tiwari, E., Singh, N., & Darbha, G. K. (2021). Biochar-facilitated remediation of nanoplastic contaminated water: Effect of pyrolysis temperature induced surface modifications. Journal of Hazardous Materials, 417. https://doi.org/10.1016/j.jhazmat.2021.126096

Gregory, J. (1998). Turbidity and beyond. Filtration and Separation, 35(1). https://doi.org/10.1016/S0015-1882(97)83117-5

Huang, D., Tao, J., Cheng, M., Deng, R., Chen, S., Yin, L., & Li, R. (2021). Microplastics and nanoplastics in the environment: Macroscopic transport and effects on creatures. In Journal of Hazardous Materials (Vol. 407). https://doi.org/10.1016/j.jhazmat.2020.124399
Mofijur, M., Ahmed, S. F., Rahman, S. M. A., Arafat Siddiki, S. Y., Islam, A. B. M. S., Shahabuddin, M., Ong, H. C., Mahlia, T. M. I., Djavanroodi, F., & Show, P. L. (2021). Source, distribution and emerging threat of micro- and nanoplastics to marine organism and human health: Socio-economic impact and management strategies. Environmental Research, 195. https://doi.org/10.1016/j.envres.2021.110857

Pulido-Reyes, G., Magherini, L., Bianco, C., Sethi, R., von Gunten, U., Kaegi, R., & Mitrano, D. M. (2022). Nanoplastics removal during drinking water treatment: Laboratory- and pilot-scale experiments and modeling. Journal of Hazardous Materials, 436. https://doi.org/10.1016/j.jhazmat.2022.129011

Ramirez Arenas, L., Ramseier Gentile, S., Zimmermann, S., & Stoll, S. (2021). Nanoplastics adsorption and removal efficiency by granular activated carbon used in drinking water treatment process. Science of the Total Environment, 791. https://doi.org/10.1016/j.scitotenv.2021.148175

Ramirez Arenas, L., Ramseier Gentile, S., Zimmermann, S., & Stoll, S. (2022). Fate and removal efficiency of polystyrene nanoplastics in a pilot drinking water treatment plant. Science of the Total Environment, 813. https://doi.org/10.1016/j.scitotenv.2021.152623

Siegel, H., Fischer, F., Lenz, R., Fischer, D., Jekel, M., & Labrenz, M. (2021). Identification and quantification of microplastic particles in drinking water treatment sludge as an integrative approach to determine microplastic abundance in a freshwater river. Environmental Pollution, 286. https://doi.org/10.1016/j.envpol.2021.117524

Vázquez, O. A., & Rahman, M. S. (2021). An ecotoxicological approach to microplastics on terrestrial and aquatic organisms: A systematic review in assessment, monitoring and biological impact. In Environmental Toxicology and Pharmacology (Vol. 84). https://doi.org/10.1016/j.etap.2021.103615

Vighi, M., Bayo, J., Fernández-Piñas, F., Gago, J., Gómez, M., Hernández-Borges, J., Herrera, A., Landaburu, J., Muniategui-Lorenzo, S., Muñoz, A. R., Rico, A., Romera-Castillo, C., Viñas, L., & Rosal, R. (2021). Micro and Nano-Plastics in the Environment: Research Priorities for the Near Future. In Reviews of Environmental Contamination and Toxicology (Vol. 257). https://doi.org/10.1007/398_2021_69

Zhang, Y., Diehl, A., Lewandowski, A., Gopalakrishnan, K., & Baker, T. (2020). Removal efficiency of micro- and nanoplastics (180 nm–125 μm) during drinking water treatment. Science of the Total Environment, 720. https://doi.org/10.1016/j.scitotenv.2020.137383